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ABSTRACT
In this article, a selection of Nakagami distribution is investigated. Some properties of the model with some plots of the density
function are illustrated. Additionally, weighted of the one-sided Gaussian distribution, Generalized Rayleigh distribution are
discussed as a special case of Generalized Nakagami distribution. In addition, maximum likelihood estimators are investigated
with numerical methods and are compared by four sub-models with a real wave height data set. Finally, a simulation study is
presented for parameters.
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1. INTRODUCTION

Nakagami distribution (NA) is useful formodeling the fading of radio signals and other areas of telecoms engineering. It has the applications
in medical imaging investigation to model the ultrasounds especially in Echo (heart efficiency test). It is also helpful for modeling high-
frequency seismogram envelopes. The reliability theory also make wide use of the NA distribution. By reason of the memory less property
of this distribution, it is well appropriate to model the constant hazard rate portion; as it is used in reliability theory. Also, it is also used
in the study of failure times of electrical components. On the other hand, the NA distribution is the excellence distribution to check the
reliability of electrical component as compared to Gamma, Weibull and lognormal distributions.

The random variable X has the NA distribution if its probability density function is defined as follows:

g (x |𝜇,Ω ) = 2 (𝜇/Ω)𝜇 x2𝜇−1 exp
(
−𝜇x2/Ω

)
/Γ (𝜇) , 𝜇 > 0; Ω > 0, x > 0, (1)

where 𝜇 is a shape parameter and Ω is a second parameter controlling spread (scale parameter). The cumulative distribution of a random
variable from (1) can be obtained as

G(x|𝜇,Ω) = 1
Γ(𝜇)𝛾(𝜇, 𝜇x

2/Ω), (2)

where 𝛾 (., .) is the incomplete gamma function. In Telatar [1], G (x |𝜇,Ω ) is represented in terms of an incomplete gamma function depen-
dent on the average signal-to-noise ratio (𝜇x2/Ω) which we denoted by ASNR. This allows the system to be characterized. The NA distri-
bution covers a wide range of fading conditions. A special case of the NA distribution in which 𝜇 = 0.5 implies the one-sided Gaussian
distribution (OG). Also, when 𝜇 = 1, it implies the Rayleigh distribution (RA). In addition, if Y belongs to gamma distribution with shape
and scale parameters 𝜃1 and 𝜃2 respectively, then √Y belongs to NA distribution with parameters 𝜇 = 𝜃1 and Ω = 𝜃1𝜃2. Finally, if 2𝜇 is
integer-valued and if B follows a chi distribution with parameters 2𝜇, hence√(Ω/2𝜇)B ∈ g (x |𝜇,Ω ).

The problem ofmodeling lifetime of systems and components in reliability theory and survival analysis among other sciences is very impor-
tant. In some real situations the measurements are not reported according to the standard distribution of the data. This may be due to the
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fact that the units of a population have unequal chances in order to be recorded by investigator. In a special case, the probability of recording
data from the main population depends on size (length) of the data. The random sample drawn in this way is called a size-biased sample.

In this article, we pay attention to a selection model from the NA distribution. Selection distributions have been considered extensively by
many authors; for a best survey of estimation method discussions and applications, see Heckman [2], Copas and Li [3], Arrellano-Valle
et al. [4], Signer et al. [5], Balakrishnan et al. [6], Zamani et al. [7] and Arashi et al. [8] andmore recently. The organization of this paper is as
follows: In Section 2, we present definition and some representations of this model. In Section 3, some important properties are discussed.
Also, numerical methods and graphs helped to picture somemeasures are obtained. Statistical inferences by numerical methods are fulfilled
in Section 4 to estimate the parameters of the introduced distribution with real wave height data. In Section 5, the explanation of various
estimators compared by performing the Monte Carlo simulation is studied.

We use the notation X
D→ Y to mean that X and Y are equal in distribution.

2. DEFINITION

Let A ∈ R+ and B ∈ R+ be two random vectors and D to be a measurable subset of R+. Arellano-Valle et al. [4] studied a weighted
distribution as the conditional distribution of B given A ∈ D. Clearly, a p−dimensional random vector Xw is said to have a multivariate

weighted density function with parameters depending on the characteristics of A, B andD, if Xw D→ (B |A ∈ D ). If B has a pdf, fB, then Xw

has a pdf as follows:

fXw (x) = fB (x)
Pr (A ∈ D |B = x )

Pr (A ∈ D)
. (3)

The random variable Xw is called the weighted version of X, and its distribution in relative to X is called the weighted distribution of X with
weight function w (x). Some special weighted functions are mentioned in Patil [9] and Azzalini [10].

Let X be a random variable with the probability density function (1) and let we selected generalized weighted function as mentioned in Patil
[9] as

w (x) = x𝜃F i(x)F
j
(x).

Then, by (3) we have

fXw (x) = x𝜃F i(x)F
j
(x)g (x)

Eg[x𝜃F i(x)F
j
(x)]

; x > 0. (4)

According to (1), we have

Ii,j,𝜃 (𝜇,Ω) = Eg [x𝜃F i (x) F
j
(x)]

= 2 (𝜇/Ω)𝜇

Γ (𝜇) ∫
∞

0

(
1

Γ (𝜇)𝛾
(
𝜇, 𝜇x2/Ω

))i

×
(
1 −

𝛾
(
𝜇, 𝜇x2/Ω

)
Γ (𝜇)

)j

x2𝜇+𝜃−1 exp
(
−𝜇x2/Ω

)
dx.

(5)

As mentioned in Gradshteyn and Ryshik [11], we know that the lower incomplete gamma function can be rewritten as

𝛾 (𝛼, x) = x𝛼
𝛼 ×1 F1 (𝛼; 1 + 𝛼;−x) ,

According to Gradshteyn and Ryshik [11] 𝛼 and x are parameters and 1F1 (.; .; .) is the generalized hypergeometric function with one param-
eter of type 1 and one parameter of type 2. Suppose for a reasonably low outage probability, the ASNR has to be sufficiently large, that is,
the term 𝜇x2/Ω in (2) has to be small, we invoke an asymptotic expansion of the confluent hypergeometric function at small x. From the
series expansion in Gradshteyn and Ryshik [11], we observe that 1F1 (𝛼; 1 + 𝛼;−x) → 1 for x → 0. By taking 𝛾

(
𝜇, 𝜇x2/Ω

)
/Γ (𝜇) = u, we

get that (5) can be expressed as

Ii,j,𝜃 (𝜇,Ω) =
(
Ω
𝜇

) 𝜃
2
(Γ (𝜇 + 1))

𝜃
2𝜇 B

(
j + 1, i + 𝜃

2𝜇 + 1
)
, (6)
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whereas B (., .) is beta function. By using (4) and (6), and after some elementary algebra, we have Generalized Nakagami density function,
GN, (denoted as GN

(
i, j, 𝜃, 𝜇,Ω

)
) as follows:

fXw (x) = 𝜑1 (𝜇, 𝜃,Ω)𝜑−1
2 (𝜇, 𝜃,Ω) , x > 0, (7)

where

𝜑1 (𝜇, 𝜃,Ω) = 2
(
𝛾
(
𝜇, 𝜇x2/Ω

)) (
Γ (𝜇) − 𝛾

(
𝜇, 𝜇x2/Ω

))j x2𝜇+𝜃−1 exp
(
−𝜇x2/Ω

)
;

𝜑2 (𝜇, 𝜃,Ω) = (Ω)
𝜃
2
+𝜇

(𝜇)
𝜃(1−𝜇)−2𝜇2

2𝜇 Γ
i+j+

𝜃
2𝜇 +1

(𝜇)B
(
j + 1, i + 𝜃

2𝜇 + 1
)
.

In addition, we can conclude that a generalized OG distribution (denoted as f [1]Xw (x)) and a Generalized RA distribution (denoted as f [2]Xw (x))
as sub-models of (7) as respectively follows:

f [1]Xw (x) = 𝜋−
j+𝜃+1

2 𝜑3(𝜇, 𝜃,Ω)𝜑−1
4 (𝜇, 𝜃,Ω), x ∈ R+,

and

f [2]Xw (x) = 𝜑−1
4 (𝜇, 𝜃,Ω)𝜑5 (𝜇, 𝜃,Ω), x ∈ R+,

where erf (x) is error function,

𝜑3 (𝜇, 𝜃,Ω) = (2)
𝜃+1
2

(
erf

(
x√1/2Ω

))i (
√𝜋 −√𝜋 erf

(
x√1/2Ω

))j
x𝜃 exp

(
−x2/2Ω

)
,

𝜑4 (𝜇, 𝜃,Ω) = Ω
𝜃+1
2 B

(
j + 1, i + 𝜃 + 1

)
and

𝜑5 (𝜇, 𝜃,Ω) = 2
(
𝛾
(
1, x2/Ω

))i (1 − 𝛾
(
1, x2/Ω

))j x𝜃+1 exp
(
−x2/Ω

)
.

Now, we consider the effect of any parameter on the pdf of GN
(
i, j, 𝜃, 𝜇,Ω

)
introduced in (7) with Figure 1. In each panel, one of the

parameters changes in first three panels and in the last panel we change all parameters with together.

Figure 1 Plots of the density function with effect of parameters.
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We furnish two simple formula for pdf of the GN
(
i, j, 𝜃, 𝜇,Ω

)
distribution, if j ∉ ℤ>0 or j ∈ ℤ>0. First, if |x| < 1 and j ∉ ℤ+, it follows the

series (Nadarajah and Kotz [12], p. 324, Eq. (1.7))

(1 − x) j =
∞
∑
y=0

(−1) y Γ ( j + 1)
Γ( j − y + 1)y! x

y. (8)

Using the series representation (8), the pdf of the GN
(
i, j, 𝜃, 𝜇,Ω

)
distribution for |𝛾

(
𝜇, 𝜇x2/Ω

)
/Γ (𝜇) | < 1 and j ∉ ℤ+ can be

expanded as

fXw (x) = 2𝜘−1
2 (x, 𝜃, 𝜇,Ω)

∞
∑
y=0

(−1)y Γ
(
j + 1

)
Γy (𝜇)Γ

(
j − y + 1

)
y!

(
𝜇x2/Ω

)𝜇i+y

𝜇i+y × 𝜘1 (x, 𝜃, 𝜇,Ω) ,

where

𝜘1 (x, 𝜃, 𝜇,Ω) =
(
1F1

(
𝜇; 1 + 𝜇;−

(
𝜇x2/Ω

)))i+y x2𝜇+𝜃−1 exp
(
−𝜇x2/Ω

)
;

𝜘2 (x, 𝜃, 𝜇,Ω) = (Ω)
𝜃
2
+𝜇

(𝜇)
𝜃(1−𝜇)−2𝜇2

2𝜇 Γ
i+
𝜃
2𝜇 +1

(𝜇)B
(
j + 1, i + 𝜃

2𝜇 + 1
)
.

By using confluent hypergeometric function Rainville ([13], p. 123) we can be rewrite the pdf of the GN
(
i, j, 𝜃, 𝜇,Ω

)
distribution as

fXw (x) =
2∑∞

y=0
(−1)yΓ(j+1)

Γy(𝜇)Γ(j−y+1)y!

(
𝜇x2/Ω

)𝜇i+y
𝜇i+y ×

(
∑∞

n=0
(𝜇)n
(𝜇+1)n

(
−
(
𝜇x2/Ω

))n

n!

)i+y

x2𝜇+𝜃−1 exp
(
−𝜇x2/Ω

)
(Ω)

𝜃
2
+𝜇

(𝜇)
𝜃(1−𝜇)−2𝜇2

2𝜇 Γ
i+
𝜃
2𝜇 +1

(𝜇)B
(
j + 1, i + 𝜃

2𝜇 + 1
) . (9)

If ||
(
(𝜇)n

(
−
(
𝜇x2/Ω

))n)
/
(
(𝜇 + 1)n n!

)|| < 1 and (n)a is Pochhammer’s symbol, Eq. (9) can be rewritten as

fXw (x) =
2∑∞

y=0∑
∞
n=0 𝜑𝜇,j

(
y, n

)
x2𝜇+𝜃+2n2−1+2𝜇i+2y exp

(
−𝜇x2/Ω

)
(𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

, (10)

where

𝜑𝜇,j
(
y, n

)
=

(−1)y+n2 Γ
(
j + 1

)
(n + 1)(i+y−1)

Γy (𝜇)Γ
(
j − y + 1

)
y!
(
i + y − 1

)
!
(𝜇/Ω)𝜇i+y+n2

(n! )n 𝜇i+y

( (𝜇)n
(𝜇 + 1)n

)n

.

Now, we can obtain cumulative distribution function of the GN
(
i, j, 𝜃, 𝜇,Ω

)
in this case as follows:

FXw (x) =
2∑∞

y=0∑
∞
n=0 𝜑𝜇,j

(
y, n

) ∫ x
0
u2𝜇+𝜃+2n2−1+2𝜇i+2y exp

(
−𝜇u2/Ω

)
du

(𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)
.

Now, on setting t = 𝜇u2/Ω, FXw (x) reduces to

FXw (x) =
∞
∑
y=0

∞
∑
n=0

𝜑𝜇,j
(
y, n

) ∫ 𝜇x2/Ω
0 [t]𝜇+

𝜃
2
+n2−1+𝜇i+y

exp (−t) dt

(𝜇/Ω)
𝜃
2
+n2+𝜇i+y Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

.

Then we have

FXw (x) =
∞
∑
y=0

∞
∑
n=0

𝜑𝜇,j
(
y, n

)
𝛾
(
𝜇 (i + 1) + 𝜃

2
+ n2 + y, 𝜇x2/Ω

)
(𝜇/Ω)

𝜃
2
+n2+𝜇i+y Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

.
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If 𝜇 + 𝜃
2 + n2 ∈ ℤ+, then

FXw (x) =
∞
∑
y=0

∞
∑
n=0

𝜑𝜇,j
(
y, n

) (
𝜇 + 𝜃

2
+ n2 − 1

)
!
⎛⎜⎜⎝1 − exp

(
−𝜇x2/Ω

)
∑

𝜇(i+1)+
𝜃
2
+n2+y−1

w=0
(
𝜇x2/Ω

)w /w! ⎞⎟⎟⎠
(𝜇/Ω)

𝜃
2
+n2+𝜇i+y Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

. (11)

Second, by application of the binomial expansion in (7), when j ∈ ℤ+, we can rewrite (7) as follows:

fXw (x) =
2∑j

k=0 (−1)
k
(

j
k

)
(1/Γ (𝜇))k+i+1 (𝛾 (𝜇, 𝜇x2/Ω))k+i x2𝜇+𝜃−1 exp

(
−𝜇x2/Ω

)
(𝜇/Ω)−𝜇 Ii,j,𝜃 (𝜇,Ω)

. (12)

With same assumptions in (10) and same steps, we can represent (12) as follow:

fXw (x) =
2∑j

k=0∑
∞
n=0𝜛𝜇,j,i (n, k)

(
(𝜇)n

n!(𝜇+1)n

)n

x2𝜇(k+i)+2𝜇+𝜃−1+2n2 exp
(
−𝜇x2/Ω

)
Ii,j,𝜃 (𝜇,Ω) , (13)

where𝜛𝜇,j,i (n, k) is given in Appendix.

Also, the cumulative distribution function in this case can be followed with same technique.

FXw (x) =
∑j

k=0∑
∞
n=0𝜛𝜇,j,i (n, k)

(
(𝜇)n

n!(𝜇+1)n

)n

(Ω/𝜇)𝜇
(k+i)+𝜇+

𝜃
2
+n2 𝛾

((
𝜇 (k + i) + 𝜇 + 𝜃

2
+ n2

)
, 𝜇x2/Ω

)
Ii,j,𝜃 (𝜇,Ω) .

If 𝜇 (k + i) + 𝜇 + 𝜃
2
+ n2 ∈ ℤ+, we have

FXw (x) =

∑j
k=0∑

∞
n=0𝜛𝜇,j,i (n, k) c𝜇,Ω,,i (n, k)

⎛⎜⎜⎝1 − exp
(
−𝜇x2/Ω

)
∑

(
𝜇(k+i)+𝜇+

𝜃
2
+n2−1

)
w=0

(
𝜇x2/Ω

)w /w! ⎞⎟⎟⎠
Ii,j,𝜃 (𝜇,Ω) , (14)

where c𝜇,j,i (n, k) =
(

(𝜇)n
n!(𝜇+1)n

)n

(Ω/𝜇)𝜇
(k+i)+𝜇+

𝜃
2
+n2 (𝜇 (k + i) + 𝜇 + 𝜃

2
+ n2 − 1

)
! .

3. PROPERTIES OF THE GN DISTRIBUTION

We need to emphasize the importance of hazard rate, reversed hazard rate, moments and moment generating functions in any statistical
analysis especially in applied issues. An advantages and characteristics of a distribution can be studied throughmeasures of central tendency;
dispersion functions; measures of skewness and kurtosis.

The hazard rate
(
r (x) = fXw (x) / (1 − FXw (x))

)
, and reversed hazard rate functions

(
̃r (x) = fXw (x) /FXw (x)

)
of GN

(
i, j, 𝜃, 𝜇,Ω

)
can be

obtained directly using Equations (10–12, 14).

Now, we consider the effect of any parameter on reversed hazard function with Figure 2. In each panel, one of the parameters is changed.

If X ∼ GN
(
i, j, 𝜃, 𝜇,Ω

)
, then the rthmoment is given by

E(Xr) =
∑∞

y=0∑
∞
n=0 𝜑𝜇,j

(
y, n

)
Γ
(
𝜇 (i + 1) + 𝜃+r

2
+ n2 + y

)
Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

.

If ||
(
(𝜇)n

(
−
(
𝜇x2/Ω

))n)
/
(
(𝜇 + 1)n n!

)|| < 1, |𝛾
(
𝜇, 𝜇x2/Ω

)
/Γ (𝜇) | < 1, j ∉ ℤ+ and

𝜏𝜇,j
(
y, n

)
=

(−1)y+n2 Γ
(
j + 1

)
(n + 1)(i+y−1)

Γy (𝜇)Γ
(
j − y + 1

)
y!
(
i + y − 1

)
!
[(Ω/𝜇)]

𝜃
2
+

r
2

(n! )n 𝜇i+y

( (𝜇)n
(𝜇 + 1)n

)n

.
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Figure 2 Plots of reversed hazard function with effect of parameters.

Also, if j ∈ ℤ+, we obtain E(Xr) as

E(Xr) =
j

∑
k=0

∞
∑
n=0

𝜛𝜇,j,i (n, k)Γ
(
𝜇 (k + i) + 𝜇 + 𝜃

2 + n2
)
,

where 𝜛𝜇,j,i (n, k) = 𝜛𝜇,j,i (n, k)
(
(𝜇)n/

(
n! (𝜇 + 1)n

))n
/

(
[(𝜇/Ω)]𝜇

(k+i)+𝜇+
𝜃
2
+n2

Ii,j,𝜃 (𝜇,Ω)

)
. Now, The skewness and kurtosis mea-

sures can be obtained from the ordinary moments utilizing well-known relationships.

If X ∼ GN
(
i, j, 𝜃, 𝜇,Ω

)
, then its moment generating function is given by

M (t) =
2∑∞

y=0∑
∞
n=0 𝜑𝜇,j

(
y, n

) ∫∞
0

x2𝜇+𝜃+2n2−1+2𝜇i+2y exp
(
−𝜇x2/Ω + tx

)
dx

(𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)
.

Substituting u = 𝜇x2/Ω + tx, we have

M (t) =
∞
∑
y=0

∞
∑
n=0

2𝜑𝜇,j
(
y, n

) ∫∞
0

(
t2 + 4 (𝜇/Ω) u

)−0.5 [t ±√t2 + 4 (𝜇/Ω) u]
2𝜇+𝜃+2n2−1+2𝜇i+2y

exp (−u) du

[2 (𝜇/Ω)]2𝜇+𝜃+2n2−1+2𝜇i+2y (𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)
.

Hence, for 2𝜇 + 𝜃 + 2n2 − 1 + 2𝜇i + 2y > 0 integer, and by taking 2𝜇 + 𝜃 + 2n2 − 1 + 2𝜇i + 2y = d, and d ∈ ℤ+we can obtain

M (t) =
∞
∑
y=0

∞
∑
n=0

2𝜑𝜇,j
(
y, n

)
∑d

s=0 (±1)
s
(
d
s

)
td−s ∫

∞

0

(
4u (𝜇/Ω) + t2

) s−1
2 exp (−u) du

[2 (𝜇/Ω)]2𝜇+𝜃+2n2−1+2𝜇i+2y (𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)
,

=
∞
∑
y=0

∞
∑
n=0

d

∑
s=0

(
d
s

)
2𝜑𝜇,j

(
y, n

)
(±1)s td−s (4 (𝜇/Ω))

s−1
2 Γ

( s+1
2
, t2

4(𝜇/Ω)
)
exp

(
[ t2

4(𝜇/Ω) ]
)

[2 (𝜇/Ω)]2𝜇+𝜃+2n2−1+2𝜇i+2y (𝜇/Ω)−𝜇 Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)
.

It is not possible to compute the median and mode explicitly. The mode is obtained from the equation below(
𝜇x2/Ω

)𝜇−1 e−𝜇x
2/Ω [i

(
𝛾
(
𝜇, 𝜇x2/Ω

))−1 − j
(
Γ (𝜇) − 𝛾

(
𝜇, 𝜇x2/Ω

))−1] = 2 (𝜇x/Ω) − (2𝜇 + 𝜃 − 1) x−1.
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To obtain the median, we consider that F (x) = 1
2 , hence

∞
∑
y=0

∞
∑
n=0

𝜑𝜇,j
(
y, n

) (
𝜇 + 𝜃

2
+ n2 − 1

)
!
⎛⎜⎜⎝1 − exp

(
−𝜇x2/Ω

)
∑

𝜇(i+1)+
𝜃
2
+n2+y−1

w=0
(
𝜇x2/Ω

)w /w! ⎞⎟⎟⎠
(𝜇/Ω)

𝜃
2
+n2+𝜇i+y Γi+1 (𝜇) Ii,j,𝜃 (𝜇,Ω)

= 1/2,

if 𝜇 + 𝜃
2 + n2 ∈ ℤ+, otherwise we should solve the following equation to obtain the median:

j

∑
k=0

∞
∑
n=0

𝜛𝜇,j,i (n, k) c𝜇,Ω,,i (n, k)
(
1 − exp

(
−𝜇x2/Ω

) d

∑
w=0

(
𝜇x2/Ω

)w /w!) = Ii,j,𝜃 (𝜇,Ω) /2,

where d =
(
𝜇 (k + i) + 𝜇 + 𝜃

2 + n2 − 1
)
.

These central indices computed numerically, and we show output for some values that indicate in the Table 1 as

The basic uncertainty measure for density function f is differential entropy

HX( f ) = E[− ln fX(X)] = ∫
∞

0
fX(x) ln

1
fX(x)

dx.

The differential entropy of a non-negative absolutely continuous random variable X, is also known as Shannon information measure or
sometime called dynamic measure of uncertainty. Intuitively speaking the entropy gives the expected uncertainty contained in f (x) about
the predictability of an outcome of X, see Ebrahimi and Pellerey [14]. It also measure how the distribution spreads over its domain. A high
value of HX corresponds to a low concentration of the probability mass of X.

When 𝜃 = 1, i = j = 0, the density function in (7) is referred to as length-biased distribution. Then, we have

E [x𝜃] = 1
Γ (𝜇)

(
Ω
𝜇

) 𝜃
2 Γ

(
𝜇 + 𝜃

2

)
.

Hence,

HX
(
fXw (x)

)
= ln 2 +

(
𝜇 + 𝜃

2

)
[ln (𝜇/Ω) − 1] + (2𝜇 + 𝜃 − 1)

2 [𝜓
(
𝜇 + 𝜃

2

)
− ln

( 𝜇
Ω
)
] − lnΓ

(
𝜇 + 𝜃

2

)
,

where

∫
∞

0
tv−1 ln t exp

(
−pt

)
dt = Γ (v) p−v [𝜓 (v) − ln p] .

Also, Havrda and Charvat [15] introduced 𝛽−entropy class as follows:

H𝛽(fXw ( x)) = {
1

𝛽 − 1
[1 − ∫

∞

0
f 𝛽Xw (x)(x)dx] ; 𝛽 ≠ 1, 𝛽 > 0,

H(fXw (x)) 𝛽 = 1,
, (15)

Table 1 The mean, median and mode of GN
(
𝜃,𝜇,Ω

)
.

(𝜃, 𝜇, Ω) Mean Median Mode

(1, 80.97, 204.01) 14.2838 14.1990 14.2357
(0.5, 93.49, 196.89) 14.0072 13.9790 14.0198
(0.25, 0.912, 1.293) 1.0091 0.9493 1.0548
(0.125, 3.68, 76.74) 5.4827 5.4178 4.9304
(0.125, 3.64, 28.23) 8.9588 8.8974 8.6173
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where 𝛽 is a non-stochastic constant, by using (15) and (7) and after some elementary algebra, we have:

∫
∞

0
x𝜃𝛽Gi𝛽 (x)G

j𝛽
(x) g𝛽 (x |𝜇,Ω ) dx

=
(
Ω
𝜇

)𝛽𝜃
2 (Γ (𝜇 + 1))

𝛽𝜃
2𝜇 B

(
j𝛽 + 1, 𝛽

(
i + 𝜃

2𝜇

))
.

Hence

H𝛽
(
fXw (x)

)
= 1
𝛽 − 1

[1 −
B
(
j𝛽 + 1,𝛽

(
i+ 𝜃

2𝜇

))
B𝛽

(
j + 1, i + 𝜃

2𝜇 + 1
)] ;

for all 𝛽 > 1.

4. NUMERICAL ILLUSTRATION

In this section, we consider the problem of statistical inference about generalized weighted of the NA distribution such as maximum likeli-
hood estimator (MLE) of the unknown parameters, asymptotic distribution and bootstrap confidence intervals and bias reducedmaximum
likelihood.

4.1. MLE and Asymptotic Distribution

LetX1,X2, ...,XN be random variables that are i.i.d. according to (7) andΘ =
(
i, j, 𝜃, 𝜇,Ω

)T. The log-likelihood function of the independent
multivariate generalized weighted of the NA distribution based on X1,X2, ...,XN is given by

ln =
N
∑
i=1

ln gw𝜃,i,j (x)

=

i∑N
k=1 ln 𝛾

(
𝜇, 𝜇x2k/Ω

)
+ j∑N

k=1 ln
(
Γ (𝜇) −∑N

k=1 𝛾
(
𝜇, 𝜇x2k/Ω

))
+ (2𝜇 + 𝜃 − 1)∑N

k=1 ln xk −∑N
k=1 𝜇x

2
k/Ω + N ln 2 − N

(
𝜃
2 + 𝜇

)
lnΩ

−N
(
𝜃 (1 − 𝜇) − 2𝜇2

2𝜇

)
ln𝜇 − N

(
i + j + 𝜃

2𝜇 + 1
)
lnΓ (𝜇) − N lnB

(
j + 1, i + 𝜃

2𝜇 + 1
) , (16)

where {xk, k = 1, ...,N} are samples of {Xk, k = 1, ...,N} , and we simply apply the chain rule:

𝜕
𝜕x lnΓ (x + k) = −𝛾 +

∞
∑
r=1

(1
r −

1
r + x + k − 1

)
,

where 𝛾 is the Euler–Mascheroni constant. Let Cu = (𝜇)𝜇−1 (x2u/Ω)𝜇 exp (−𝜇x2u/Ω)
, 𝜁 = Γ (𝜇) − ∑N

k=1 𝛾
(
𝜇, 𝜇x2k/Ω

)
and 𝜓tr

x (.) =

𝜕𝜓0 (.) /𝜕x denotes the trigamma function, then the score function is given by U
(
X1,X2, ...,XN|Θ =

(𝜕ln
𝜕i ,

𝜕ln
𝜕j ,

𝜕ln
𝜕𝜃 ,

𝜕ln
𝜕𝜇 ,

𝜕ln
𝜕Ω

)T

, where

𝜕ln
𝜕i =

N

∑
k=1

ln 𝛾
(
𝜇, 𝜇x2k/Ω

)
− N lnΓ (𝜇) − N [𝜓0

(
i + 𝜃

2𝜇 + 1
)
− 𝜓0

(
i + 𝜃

2𝜇 + j + 2
)
] , (17)

𝜕ln
𝜕j =

N

∑
k=1

ln 𝜁 − N lnΓ (𝜇) − N [𝜓0
(
j + 1

)
− 𝜓0

(
i + j + 𝜃

𝜇 + 2
)
] , (18)
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𝜕ln
𝜕𝜇 =

i∑N
k=1

Ck

𝛾
(
𝜇, 𝜇x2k/Ω

) + Nj [𝜓 (𝜇)Γ (𝜇) −∑N
k=1 Ck]

𝜁 + 2∑N
k=1 ln xk −∑N

k=1 x
2
k/Ω − N lnΩ

−N [
ln𝜇

(
−4𝜇2 − 2𝜃

)
4𝜇2 + 𝜃 (1 − 𝜇) − 2𝜇2

2𝜇2 ] − lnΓ (𝜇) −𝜃N2𝜇2 − N𝜓
0
(𝜇)

(
i + j + 𝜃

2𝜇 + 1
)

+N 𝜃
2𝜇2 [𝜓0

(
i + 𝜃

2𝜇 + 1
)
− 𝜓0

(
i + j + 𝜃

2𝜇 + 2
)
]

𝜕ln
𝜕Ω =

N

∑
k=1

𝜇x2k/Ω2 − iΩ2𝜇−2𝜇−𝜇+2
N

∑
k=1

(
x2k
)1−𝜇 Ck

𝛾
(
𝜇, 𝜇x2k/Ω

) + jNΩ2𝜇−2𝜇−𝜇+2
∑N

k=1 Ckx
2(1−𝜇)
k

𝜁 − N
Ω

(
𝜃
2 + 𝜇

)
,

𝜕ln
𝜕𝜃 =

N

∑
k=1

ln xk − (N lnΩ/2) − N ln𝜇 (1 − 𝜇) /2𝜇 − N lnΓ (𝜇) /2𝜇

−N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
2𝜇

(
i + 𝜃

2𝜇

))−1

+ 2𝜇
⎛⎜⎜⎝−𝛾 +∑∞

r=1

⎛⎜⎜⎝
1
r −

1
r + i + 𝜃

2𝜇 − 1

⎞⎟⎟⎠
⎞⎟⎟⎠ − [2𝜇

(
j + i + 𝜃

2𝜇 + 1
)
]
−1

−
(
2𝜇

(
j + i + 𝜃

2𝜇

))−1

− 2𝜇
⎛⎜⎜⎝−𝛾 +∑∞

r=1

⎛⎜⎜⎝
1
r −

1
r + j + i + 𝜃

2𝜇 − 1

⎞⎟⎟⎠
⎞⎟⎟⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and 𝜓n (x) is the polygamma function, defined in Abramowitz and Stegun ([16], p. 258), we simply apply the chain rule:

𝜕
𝜕x lnΓ (x + k) = −𝛾 +

∞
∑
r=1

(1
r −

1
r + x + k − 1

)
,

where 𝛾 is the Euler–Mascheroni constant.

The ML estimation of Θ, Θ̂, requires solving the non-linear system U(x, Θ) = 0, which does not lead to a closed-form expression for Θ̂.
Then we require numerical methods to estimateΘ. An asymptotic expansion of 𝜓0 (x) is provided in Abramowitz and Stegun ([16], p. 259),
and by using the first order approximation 𝜓0 (x) ≃ ln x − (1/2x) in (17 and 18), we obtain the ML estimation of Θ =

(
i, j, 𝜃, 𝜇,Ω

)T as a
solution of the following fixed-point type equations;

g
( ̂i) = ̂i, g

( ̂j) = ̂j, g
( ̂𝜃

)
= ̂𝜃, g (𝜇̂) = 𝜇̂, and g

(
Ω̂
)
= Ω̂.

This solution can be obtained by simple iterative procedure, for instance suppose we start with an initial guess 𝜇̂0, then the next iteration
𝜇1 can be obtained as 𝜇̂1 = g (𝜇̂0), similarly, 𝜇̂2 = g (𝜇̂1) and so on. Finally the iterative procedure should be stopped when |𝜇̂i − 𝜇̂i+1| < 𝜀 ,
where 𝜀 is a pre-assigned tolerance value. Also, to compute the standard error, approximate confidence intervals and hypothesis testing
of Θ, we use the information matrix that does not have a closed form. Then we use observed information matrix, defined as 𝜍 (Θ∗) =
−∇∇Tln |Θ=Θ∗ .

Also,

ĤX
(
fXw (x)

)
= ln 2 +

(
𝜇̂ +

̂𝜃
2

)
[ln

(
𝜇̂/Ω̂

)
− 1] +

(
2𝜇̂ + ̂𝜃 − 1

)
2 [𝜓

(
𝜇̂ +

̂𝜃
2

)
− ln

(
𝜇̂
Ω̂

)
] − lnΓ

(
𝜇̂ +

̂𝜃
2

)
, (19)

and

Ĥ𝛽
(
fXw (x)

)
= 1
𝛽 − 1

[1 −
B
(
̂j𝛽 + 1,𝛽

(
̂i+ ̂𝜃

2𝜇̂

))
B𝛽

(
̂j + 1, ̂i + ̂𝜃

2𝜇̂ + 1
)] . (20)

According Migon et al. [17] we can treat MLE as approximately hepta-variate normal; consequently, when n → ∞ we can compute the
standard error and asymptotic confidence intervals for Θ by using the expected fisher information matrix (E (JΘ)), given by

E (JΘ) = [
̂J11 … ̂J15
⋱ ⋮

̂J55
] ,
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where elements of this matrix (JΘ) based on a single observation is given in Appendix. Also, the asymptotic joint distribution of the maxi-
mum likelihood of Θ̂ can be stated as

√n

⎡
⎢
⎢
⎢
⎢
⎣

i − ̂i
j − ̂j
𝜃 − ̂𝜃
𝜇 − 𝜇̂
Ω − Ω̂

⎤
⎥
⎥
⎥
⎥
⎦

d→ N5
(
0,E

(
J−1)) ,

where
d→ denotes convergence in distribution and J−1 is the inverse of the fisher information matrix J with

1
n J

−1 = 1
n

⎡⎢⎢⎢
⎣

̂J11 … ̂J15
⋱ ⋮

̂J55

⎤⎥⎥⎥
⎦

−1

= 1
n

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Var
( ̂i) Cov

( ̂i, ̂j) ⋯ Cov
( ̂i, ̂𝜃

)
Var

( ̂j) … Cov
( ̂j, ̂𝜃

)
⋱ ⋮

Var
( ̂𝜃

)
⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Then asymptotic equal tailed 100(1 − 𝜅)% confidence intervals for Θ can be determined as:

̂𝚤 ± z𝜅/2√Var( ̂𝚤); ̂𝚥 ± z𝜅/2√Var( ̂𝚥); 𝜇̂ ± z𝜅/2√Var(𝜇̂); Ω̂ ± z𝜅/2√Var(Ω̂); ̂𝜃 ± z𝜅/2√Var( ̂𝜃),

where z𝜅 is 100𝜅 th percentile of N(0, 1).

4.2. Simulation

To generate NA distributed samples, we can use the relationship between NA random variable (X), and gamma random variable (Y), that is
Y = X2, for generating gamma distributed samples, we used Matlab programming. Without loss of generality throughout the simulations,
we generated data with i = j = 0, and 𝜃 = 2 for Φ =

(
𝜇,Ω,H,H𝛽

)
that appear in (16), (19) and (20) by using the Monte Carlo simulation

as follows.

1. Generate random samples of sizes n = 25, 50, 75, 100 for each choice of the vector of the parameters Θ =
(
𝜇,Ω,H,H𝛽

)
2. The estimates are obtained by maximizing (16) numerically.

3. The bias and mean square errors (MSE) of the estimations are calculated based on 1000 Monte Carlo repetitions. and the results are
presented in Tables 2 and 3.

4. From Tables 2 and 3, we see that in most of the considered cases, the MSE of the estimation parameters decrease as n increases. The
first 1000 simulations of the estimates and their biases are plotted in Figures 3 and 4.

The box plot in Figure 3 shows that among 1000 simulated estimates, there are 11 outliers for estimating 𝜇, six outliers for estimating Ω,
five outliers for estimating H and ten outliers for estimating H𝛽 . The probability plots in Figure 4 show that the biases of estimates, follow
normal distributions that shown the data fit the GN model well, except the outliers are evident at the high and low end of the range.

Table 2 Bias of the estimation of Φ̂ =
(
𝜇̂, Ω̂, Ĥ, Ĥ𝛽

)
.

Φ =
(
𝜇,Ω,H,H𝛽

)
n ̂𝜇 Ω̂ Ĥ Ĥ𝛽

25 1.66471 −0.0097242 0.1288861 0.3051938
(9, 0.05, 1.9, 0.9) 50 0.83921 −0.0097206 0.1069311 0.2479989

75 0.78625 −0.0092648 0.1165099 0.0756641
100 0.49690 −0.0097457 0.0977865 0.1894217
25 6.35943 0.25078738 −0.6844654 0.1247769

(21, 0.3, 1.4, 0.997) 50 5.34456 0.25220518 −0.699643 0.0948707
75 4.06696 0.23026453 −0.8001621 0.4420531
100 4.90382 0.25265919 −0.7125854 0.0991315
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Table 3 MSE of Φ̂ =
(
𝜇̂, Ω̂, Ĥ, Ĥ𝛽

)
.

Φ =
(
𝜇,Ω,H,H𝛽

)
n ̂𝜇 Ω̂ Ĥ Ĥ𝛽

25 17.39353 0.000134 0.057585 2.794999
(9, 0.05, 1.9, 0.9) 50 6.51417 0.000121 0.035095 2.153815

75 3.470943 8.87E-05 0.019668 0.005767
100 3.316798 0.000114 0.026113 1.46267
25 66.02313 0.063837 0.499707 0.141606

(21, 0.3, 1.4, 0.997) 50 37.24665 0.063766 0.498175 0.009003
75 36.05122 0.059743 0.752393 1.621199
100 28.44723 0.064003 0.514119 0.028294

MSE: mean square errors.

Figure 3 Box plot of the estimates Φ̂ =
(
𝜇̂, Ω̂, Ĥ, Ĥ𝛽

)
.

5. APPLICATIONS

5.1. Applications in Reliability

In next results, The application of the proposed model will be verified in the reliability theory based on three datasets. The GN distribution
is compared with other usual two parameter lifetime distributions. The following lifetime distributions were considered.

5.2. Wave Height Data

The modeling of wave heights is used by mariners, as well as in coastal, ocean and naval engineering. Prevosto et al. [18], Mathiesen et al.
[19] and Goda and Kobune [20] studied the heights of waves by RA distribution. In this subsection, an application of the NA distribution toPdf_Folio:85
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this problem is described. The set of data we use are for the maximum down-crossing wave heights (Hmax D), in meters, for 23 abnormal
waves, as reported by Petrova et al. ([21], p. 237). These waves were measured at the offshore platform North Alwyn in the northern part of
the North Sea, about 100 miles east the Shetland Islands, during November storm in 1997.

The data are presented below:

Data set: 16.44, 18.17, 16.97, 13.51, 15.19, 17.63, 17.99, 20.29, 18.09, 11.7, 10.78, 13.17, 13.32, 19.92, 18.33, 19.44, 15.62, 16.43, 16.01, 13.46,
15.0, 13.47, 14.09.

In order to compare the four distributionmodels, we consider the criteria like AIC (Akaike information criterion), AICC (corrected Akaike
information criterion) and BIC (Bayesian information criterion). The better distribution corresponds to lesser AIC, AICc and BIC values.
Table 4 indicated that the GN distribution has the lesser AIC, AICC and BIC values compared to NA distribution, OG distribution and
RA distribution. Hence, we can conclude that the GN distribution leads to a better fit than other models. Further, Table 5 reports the
maximum likelihood estimates of the parameters, also, 95% asymptotic confidence intervals for the parameters are provided. Moreover,
Figure 5 shows empirical and fitted distribution, we see that the GN provided a better fit for this data that NA distribution, OG distribution
and RA distribution.

Figure 4 Q − Q plot for the bias of Φ̂ =
(
𝜇̂, Ω̂, Ĥ, Ĥ𝛽

)
.

Table 4 Goodness of fit criteria.

Model −2 log L AIC AICc BIC

GN 100.277 104.277 104.877 106.548
NA 140.833 144.833 145.433 147.104
OG 202.2293 204.2293 204.4198 205.3648
RA 217.1838 219.1838 219.3743 220.3193
AIC: Akaike information criterion; AICC: corrected Akaike information criterion; BIC: Bayesian information criterion;
GN: Generalized Nakagami; NA: Nakagami; OG: One-sided Gaussian distribution; RA: Rayleigh distribution.
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Table 5 Estimate of MLEs for wave data under four particular sub-models GN
(
0, 0, 2, 𝜇,Ω

)
and asymptotic

confidence intervals are in parentheses.

Model ̂𝜇 Ω̂ Ĥ Ĥ𝛽=2

GN
9.879034

(−2.34805, 22.10612)
234.762957

(165.8062, 303.7197) −2.301852 0.9997

NA
9.499

(−4.4774, 23.4757)
258.526697

(169.7344, 347.319) 2.36844 0.9455498

OG
1
2

738.5123
(−40.927, 1517.95165) 4.02811 0.9896195

RA 1
1475.756

(727.4213, 2224.090) 4.243923 0.9918437

GN: Generalized Nakagami; MLE: maximum likelihood estimator; NA: Nakagami; OG: One-sided Gaussian distribu-
tion; RA: Rayleigh distribution.

Figure 5 Empirical and fitted distributions.
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APPENDIX
1. 𝜛𝜇,j,i (n, k) that appear in (13):

𝜛𝜇,j,i (n, k) = a𝜇,j,i (n, k) b𝜇,j,i (n, k) ,

where

a𝜇,j,i (n, k) = (−1)k−n2
(

j
k

)
(Γ (𝜇))−(k+i+1) (𝜇)−(k+i) ((k + i − 1) ! )−1 ;

b𝜇,j,i (n, k) = (n + 1)(k+i−1) (𝜇/Ω)𝜇(k+i)+𝜇+n2 ((𝜇)n /n! (𝜇 + 1)n
)n ;

𝜛𝜇,j,i (n, k) = 𝜛𝜇,j,i (n, k)
( (𝜇)n
n! (𝜇 + 1)n

)n

/

(
[(𝜇/Ω)]𝜇

(k+i)+𝜇+
𝜃
2
+n2

Ii,j,𝜃 (𝜇,Ω)

)
.

2. The fixed-point type equations for Θ =
(
i, j, 𝜇, Ω, 𝜃

)T ∶
g
( ̂i) = exp {𝛼1 + ln𝛼2 +

j + 1
2𝛼3𝛼2

} − 𝜃
2𝜇 − 1,

g
( ̂j) = 1/ [c1 + 2 lnΓ (𝜇) − 2𝜓0 (𝜋4 + 1) + 2 ln

(
j + 1

)
] − 1,

g
( ̂𝜃

)
= 1/

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
[∑N

k=1 ln xk − (N lnΩ/2) − N ln𝜇 (1 − 𝜇) /2𝜇 − N lnΓ (𝜇) /2𝜇] /N
)

−2𝜇
⎛⎜⎜⎝−𝛾 +∑∞

r=1

⎛⎜⎜⎝
1
r −

1
r + i + 𝜃

2𝜇 − 1

⎞⎟⎟⎠
⎞⎟⎟⎠

+[2𝜇
(
j + i + 𝜃

2𝜇 + 1
)
]
−1

+
(
2𝜇

(
j + i + 𝜃

2𝜇

))−1

+2𝜇
⎛⎜⎜⎝−𝛾 +∑∞

r=1

⎛⎜⎜⎝
1
r −

1
r + j + i + 𝜃

2𝜇 − 1

⎞⎟⎟⎠
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2𝜇i,

g (𝜇̂) =
⎛⎜⎜⎝ {

i𝜋1 + Nj𝜋2 + 2𝜋3 − 𝜋6 − N lnΩ+
(
𝜃N/2𝜇2) lnΓ (𝜇) − N𝜓 (𝜇) (𝜋4)

+N
(
𝜃/2𝜇2) [𝜓0

(
𝜋4 + j

)
− 𝜓0 (𝜋4 + 1)]

}
/

2N𝜋5

)1/2

,

and

g
(
Ω̂
)
= N

(
𝜃
2 + 𝜇

)⎛⎜⎜⎝(𝜇/Ω)𝜋6 − iΩ2𝜇−2𝜇−𝜇+2
N

∑
k=1

x2(1−𝜇)k Ck

𝛾
(
𝜇, 𝜇x2k/Ω

) + jNΩ2𝜇−2𝜇−𝜇+2
∑N

k=1 Ckx
2(1−𝜇)
k

𝜁
⎞⎟⎟⎠ ,

where
𝛼1 =

1
N
∑N

k=1 ln 𝛾
(
𝜇, 𝜇x2k/Ω

)
− lnΓ (𝜇),

𝛼2 = i + 𝜃
2𝜇 + j + 2,

𝛼3 = i + 𝜃
2𝜇 + 1,

c1 = −2∑N
k=1 ln 𝜁/N,

𝜋1 = ∑N
k=1 (𝜇)

𝜇−1 (x2k/Ω)𝜇 exp (−𝜇x2k/Ω)
/𝛾

(
𝜇, 𝜇x2k/Ω

)
,

𝜋2 = [𝜓 (𝜇)Γ (𝜇) − (𝜇)𝜇−1∑N
k=1

(
x2k/Ω

)𝜇 exp (−𝜇x2k/Ω)
]/ 𝜁,

𝜋3 = ∑N
k=1 ln xk,

𝜋4 = i + j + 𝜃
2𝜇 + 1,

𝜋5 = [{ln𝜇
(
−4𝜇2 − 2𝜃

)
/ 2} + 𝜃 (1 − 𝜇) − 2𝜇2] and

𝜋6 = ∑N
k=1 x

2
k/Ω.Pdf_Folio:88
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3. The elements of the 5 × 5 unit expected information matrix are given by

J11 = N {𝜓tr
i (𝜋4 + 1) − 𝜓tr

i (𝛼3)} , J12 = J21 = N𝜓tr
j (𝜋4 + 1) ,

J13 = J31 = −∑N

k=1
𝜛Ck

(
x2k/Ω

)−𝜇+1 − N [𝜓tr
𝜇 (𝛼3) − 𝜓tr

𝜇 (𝜋4 + 1) + 𝜓0 (𝜇)] ,

J14 = J41 = −∑N

k=1
𝜛 (1/Ω)−2𝜇+3 Ck𝜇−𝜇+2 (x2k)−𝜇+1 ,

J15 = J51 = N

(
2𝜇−1

(
i + 𝜃

2𝜇

)−2

+ 2𝜇∑∞
r=1

(
r + i + 𝜃

2𝜇 − 1
)−2

+ b1

)
,

J22 = N {𝜓tr
j (𝜋4 + 1) − 𝜓tr

j
(
j + 1

)
} , J23 = J32 = b2 − N𝜓0 (𝜇) + N𝜓tr

𝜇 (𝜋4 + 1) ,

J24 = J42 = 𝜁−1NΩ2𝜇−3 (𝜇)−𝜇+2∑N

k=1
Ckx

−2(𝜇+1)
k ,

J25 = J52 = 2𝜇N∑∞
r=1

(r + 𝜋4 − 2)−2 − 2𝜇N [2𝜇 (𝜋4)]−2 − 2𝜇N (2𝜇 (𝜋4 − 1))−2 ,

J33 =
i∑N

k=1𝜛
2Ck [𝜛−1b3 − 𝜇𝜇−1 (x2k/Ω)

] + Nj𝜁−3
(
b4 −∑N

k=1 Ckb3 − 𝜁b5
)

−Nb6 + 𝜓0 (𝜇)
𝜃N
2𝜇2 − lnΓ (𝜇) 𝜃N𝜇3 − Nb7 + Nb8,

J34 = J43 = i
N

∑
k=1

𝜛2
(
𝜛−1Ck

(
𝜇/Ω2) (x2k −Ω

)
+ 𝜇−𝜇+2Ω2𝜇−3C2

kx
−2(𝜇+1)
k

)
+Nj𝜁−2

(
−𝜁

(
𝜇/Ω2) N

∑
k=1

Ckxk
(
x2k −Ω

)
+ b9

)
+

N

∑
k=1

x2k/Ω2 − N𝜓0 (Ω) ,

J35 = J53 = N𝜇−2b10 − N [b11 + b12 + b13] ,

J44 =
N

∑
k=1

−2𝜇x2k/Ω3 + N
Ω2

(
𝜃
2 + 𝜇

)
− i

N

∑
k=1

𝜛2 (Ω)2𝜇−3 (𝜇)−𝜇+2 Ck
(
x2k
)1−𝜇 [(𝜇 − 2) +

(
𝜇x2k

)
(Ω)]

− i
N

∑
k=1

𝜛2 (Ω)4𝜇−5 (𝜇)2(2−𝜇) C2
k

(
x2k
)−2𝜇+2

+ jN
𝜁2 [𝜁𝜇

−𝜇+2Ω2𝜇−3
N

∑
k=1

Ckx
2(1−𝜇)
k [(𝜇 − 2) + (1/Ω)

(
𝜇x2k

)
]]

− jNΩ4𝜇−5𝜇−2𝜇+4

𝜁2
N

∑
k=1

Ckx
−2𝜇+1
k

N

∑
k=1

Ckx
2(1−𝜇)
k ,

J45 = − N
2Ω , and J55 = −N [

− (2𝜇 (𝛼3 − 1))−2 +∑∞
r=1 (r + 𝛼3 − 2)−2 + [2𝜇 (𝜋4)]−2

+ (2𝜇 (𝜋4 − 1))−2 −∑∞
r=1 (r + 𝜋4 − 2)−2 ] ,

where 𝜛i = 1/𝛾i
(
𝜇, 𝜇x2k/Ω

)
, b1 = 2𝜇∑∞

r=1 (r + 𝜋4)
−2 −2𝜇 (2𝜇𝜋4)

−2 − 2𝜇 (2𝜇 (𝜋4 − 1))−2, b2 = ∑N
k=1 𝜁

−1(
Γ (𝜇)𝜓0 (𝜇) −∑N

k=1 Ck
(
x2k/Ω

)1−𝜇), b3 = ln𝜇+ ln
(
x2k/Ω

)
−
(
x2k/Ω

)
, b4 = 𝜓tr

𝜇 (𝜇)Γ (𝜇)+ (𝜓0 (𝜇))2, b5 = [𝜓 (𝜇)Γ (𝜇) −∑N
k=1 Ck] ×
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[𝜓0 (𝜇) −∑N
k=1 Ck

(
x2k/Ω

)−𝜇+1], b6 = 2𝜇−1 ln𝜇
(
4𝜇2 + 2𝜃

)
+ 2−1𝜇−3𝜃 (𝜇 − 2) − 8𝜇 ln𝜇 −4𝜇2𝜓0 (𝜇)− 2𝜃𝜓0 (𝜇),

b7 = (𝜃/2)𝜇−1𝜓tr
𝜇 (𝜇) − (𝜃/2)𝜇−2𝜓0 (𝜇) , b8 = −𝜃𝜇−3𝜓0 (𝛼3) + (𝜃/2)𝜇−2𝜓tr

𝜇 (𝛼3) +𝜃𝜇−3𝜓0 (𝜋4 + 1) + (𝜃/2)2 𝜇−4𝜓tr
𝜇 (𝜋4 + 1),

b9 =
(
𝜓 (𝜇)Γ (𝜇) −∑N

k=1 Ck

)(
𝜇2−𝜇∑N

k=1 Ck
(
x2k/Ω2)1−𝜇 𝛾 (𝜇, 𝜇x2k/Ω))

,

b10 = (𝜇 + ln𝜇 − 𝜇Ψ0 (𝜇) + lnΓ (𝜇) − 1) /2, b11 = −2𝛾 + 2∑∞
r=1 r

−1 −
(
r + i + (𝜃/2)𝜇−1 − 1

)−1 −
(
1/2𝜇2 (𝛼3 − 1)

)
,

b12 =
(
1/2𝜇2𝜋4

)
+ 2 (𝜋4 − 1) (2𝜇 (𝜋4 − 1))−2 − (𝜃/𝜇)∑∞

r=1

(
(r + 𝛼3 − 2)−2), b13 = 𝜃

𝜇
(
∑∞

r=1
(r + 𝜋4 − 2)−2

)
−

2
(
−𝛾 +∑∞

r=1

(
1
r −

1
r + 𝜋4 − 2

))
.
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